Review

Role of nutrition and environmental endocrine disrupting chemicals during the perinatal period on the aetiology of obesity

Jerrold J. Heindel a, *, Frederick S. vom Saal b

a Division of Extramural Research and Training, National Institute of Environmental Health Sciences, NIH/DHHS, Cellular, Organs and Systems Pathobiology Branch, P.O. Box 12233, 104 Alexander Dr, Ky3-15, Research Triangle Park, NC 27709, USA
b Division of Biological Sciences, University of Missouri, Columbia, MO 65201, USA

ARTICLE INFO

Article history:
Received 20 February 2009
Accepted 24 February 2009

Keywords:
Endocrine disrupting chemicals
Intrauterine growth restriction
Macrosomia
Fetal growth
Bisphenol A
Tributyltin
DES
Cadmium

ABSTRACT

The basis for the current obesity epidemic remains controversial. However, the simplistic idea that obesity can be explained by two factors: energy intake and energy expenditure, is now being challenged due to the lack of success in decreasing obesity based on a focus on only these two factors. In this article we propose an emerging hypothesis that the recent dramatic increase in obesity could be due to developmental nutrition, developmental exposure to environmental chemicals or the interaction of nutrition and environmental chemical exposures during development. Indeed, developmental exposure to environmental chemicals in animal studies has been shown to increase the susceptibility to a number of diseases including obesity. Obesity is thus one of many diseases shown to have a developmental origin. We show that factors that impact growth during fetal and neonatal life, such as placental blood flow and nutrient transport to fetuses, as well as components of the maternal and infant diets, can influence weight gain later in life. In addition, we show that developmental exposure to endocrine disrupting chemicals can create abnormalities in homeostatic control systems required to maintain a normal body weight throughout life. Eliminating exposures to these chemicals and improving nutrition during development offer the potential for reducing obesity and associated diseases.

1. Background: factors implicated in the obesity epidemic

The prevalence of obesity has risen dramatically in the United States and in other regions of the world over the past two decades. In the United States, 30% of adults have been defined as clinically obese and 65% defined as overweight (Hedley et al., 2004). Perhaps more important is that obesity and related diseases, such as diabetes, are rising dramatically in our children. Obesity is notoriously difficult to treat; thus, a better understanding of the aetiology of obesity is critical to primary prevention. There is no doubt that nutrition and exercise are factors in obesity. However, the view that these two factors alone are the primary variables that explain the obesity epidemic is being challenged as far to simplistic, and other factors are now being considered as contributing to the obesity epidemic.
We hypothesize that environmental agents and/or nutrition act during development to:
- Alter the pathways responsible for control of adipose tissue development
- Increase the number of fat cells
- Alter food intake and metabolism
- Alter insulin sensitivity and lipid metabolism via effects on pancreas, adipose tissue, liver, GI tract, brain and muscle

The consequence is alteration of the “setpoint” or sensitivity for developing obesity later in life.

Gene–environment interaction: the focus is on development

The environment alters gene expression during vulnerable windows in development, resulting in altered epigenetic signals and increased susceptibility to obesity later in life.

Table 1

<table>
<thead>
<tr>
<th>The developmental basis of obesity.</th>
</tr>
</thead>
<tbody>
<tr>
<td>An emerging hypothesis is that the obesity epidemic could be due to the interaction of nutrition and chemical exposures during vulnerable windows in development</td>
</tr>
<tr>
<td>We hypothesize that environmental agents and/or nutrition act during development to:</td>
</tr>
<tr>
<td>Alter the pathways responsible for control of adipose tissue development</td>
</tr>
<tr>
<td>Increase the number of fat cells</td>
</tr>
<tr>
<td>Alter food intake and metabolism</td>
</tr>
<tr>
<td>Alter insulin sensitivity and lipid metabolism via effects on pancreas, adipose tissue, liver, GI tract, brain and muscle</td>
</tr>
<tr>
<td>The consequence is alteration of the “setpoint” or sensitivity for developing obesity later in life.</td>
</tr>
<tr>
<td>Gene–environment interaction: the focus is on development</td>
</tr>
<tr>
<td>The environment alters gene expression during vulnerable windows in development, resulting in altered epigenetic signals and increased susceptibility to obesity later in life.</td>
</tr>
</tbody>
</table>

Suggesting that food intake and exercise are not important, but the systems that control exercise/metabolism and food intake, and their impact on obesity, need greater attention because as discussed below, these systems can be altered by nutritional status as well as exposure to EDCs during development.

2. Developmental exposure to nutrients and adult obesity

There are extensive data relating maternal pathophysiologies (for example, diabetes), excess maternal nutrients and fetal over-growth (macrosomia), as well as maternal malnutrition and intrauterine growth restriction (IUGR), to subsequent metabolic diseases in offspring. This has resulted in a focus on maternal nutrition as a primary factor in obesity and associated morbidities of offspring.

Babies with intrauterine growth restriction (IUGR) resulting in low body weight at birth that then experience rapid postnatal “catch-up” growth are at high risk for obesity and type 2 diabetes (Oken and Gillman, 2003; Yajnik, 2001). The “thrifty phenotype” hypothesis (Barker, 2004) has been proposed to explain this finding. This hypothesis proposes that a biological state adapted for subsistence conditions is created during fetal life by IUGR. IUGR is predicted to cause the fetus to respond with endocrine and metabolic adaptations via epigenetic mechanisms that put the individual at risk for excessive postnatal weight gain when exposed during postnatal life to a high calorie diet typically encountered in developed countries (Hales and Barker, 1992; Lee et al., 2005).

Since fetal over-nutrition leading to high birth weight (macrosomia, which is typical of offspring of diabetic mothers) is also associated with a higher attained adult body mass index (BMI) (Boney et al., 2005; Martorell et al., 2001), we are faced with the seeming paradox of increased adult adiposity at both ends of the birth weight spectrum. There thus appears to be a markedly different etiology of obesity in these two sub-populations relating to differences in both fetal and postnatal growth.

Changes in maternal–fetal nutrition have been shown in animal studies to result in differences in gene methylation via supplementing the diet with methyl donors such as vitamin B12, folate and phytoestrogens in mice. Lack of methylation of the retrotransposon with a methylation sensitive promoter was associated with subsequent obesity in offspring in mice (Cooney et al., 2002; Waterland and Jirtle, 2003). These data suggest that epigenetic alterations during development may play a role in subsequent obesity later in life.
One mechanism proposed for the effect of altered nutrition during development (either low or high birth weight) on subsequent obesity later in life is alteration of leptin. Leptin is a 16 kDa polypeptide member of the cytokine receptor call 1 family, which is synthesized by adipocytes to reduce food intake (it triggers a feeling of being “full”) and increase energy utilization via binding to specific receptors in a number of peripheral and central sites, including the arcuate nucleus of the hypothalamus (Ahima, 2005). In mice, plasma leptin rises transiently at about 2 weeks of age and is involved in the formation of energy-regulation circuits in the hypothalamus (Bouret and Simerly, 2007). If a leptin surge occurs prematurely in mice via injection of leptin, or due to either fetal undernutrition or a high fat maternal diet, there is an increase in obesity and leptin resistance in adulthood (Yura et al., 2005). It appears that a premature leptin surge alters leptin programming and the developing hypothalamus, which leads to obesity in adults. It is unknown if there is a leptin surge in human infants or children, but if a surge can be shown, there is potential for translation of the animal research to human obesity. Interestingly, fetal (cord) blood levels of leptin are negatively correlated with body mass index in humans (Mantzoros et al., 2009).

3. Placental blood flow (nutrition) and fetal growth as factors in adult obesity: a new model for nutrient and nutrient-environment in chemical interactions in obesity

The methods used by scientists to study the impact of changes in fetal development on subsequent obesity and other diseases has involved a number of approaches involving manipulation of nutrients or energy expenditure (caloric restriction, protein restriction, high fat diet, and exercise), as well as manipulation of the stress-response system (dexamethasone administration, 11β-HSD knockout mice). The most common approach to studying IUGR in animal models has involved caloric restriction, which is not common in developed countries where rates of obesity have increased dramatically in recent decades. In contrast, an alternative approach has been developed that utilizes the fact that mice have two completely independent uterine horns, and removing one ovary results in a “crowded uterine horn”, since the remaining ovary ovulates the entire complement of oocytes that would normally be shed by both ovaries into the associated uterine horn (Coe et al., 2008). This model thus allows a comparison of siblings showing normal fetal growth, IUGR and macrosomia within a crowded litter produced by hemi-ovariectomized CD-1 female mice, into which the one remaining ovary ovulates approximately 12 oocytes (Fig. 1). Differential fetal growth in a crowded uterine horn is due to the unique vascular anatomy of each independent uterine horns (arterial and venous blood flow is bi-directional from each end of a uterine horn). Elevated utero–placental blood flow and increased fetal growth over the mean occurs at each end of a crowded uterine horn, while fetuses in the middle are markedly growth restricted compared to other pups.

In an initial experiment examining offspring that developed in crowded uterine horns, IUGR male CD-1 mice experienced very rapid “catch-up” growth during the week after weaning: males with IUGR increased body weight by 90% (similar to findings in humans with IUGR), while males with macrosomia increased body weight by only 30%, and both of these sub-populations subsequently remained heavier than males at the mean for body weight at birth. Using radiolabeled microspheres, it was determined that fetuses in the middle of the uterine horn had markedly reduced placental blood flow relative to fetuses at the ends of the uterine horn (Coe et al., 2008), similar to prior findings in rats (Even et al., 1994). This new model thus allows the study of the effects of differential fetal nutrition (due to differential placental blood flow) on obesity later in life using a model that more accurately mimics the human situation in developed countries. IUGR is not just a consequence of severe maternal caloric or protein restriction in developed countries, while manipulation of these variables are common experimental methods used to produce IUGR offspring in rodent studies.

Ongoing studies are examining the interaction between exposure to estrogenic chemicals, such as BPA, with differential fetal growth using the crowded uterus horn model. The hypothesis is that abnormal “programming” of genes involved in the control of body weight homeostasis via epigenetic mechanisms can occur as a result of exposure to endocrine disrupting chemicals (Dolino et al., 2007). However, it is also clear that components of the diet cannot be ignored as factors in adult obesity and other associated diseases such as type 2 diabetes (Cedergren et al., 2007; Ruhlen et al., 2008).

4. Developmental exposure to environmental chemicals and adult obesity

The EDCs that impact obesity have been referred to as “obesogens” (Grun and Blumberg, 2007). These chemicals, which are used in a wide variety of products, are categorized as EDC’s because they have been found to interfere with the functioning of the endocrine system by many different mechanisms. Recent data lend support to the “obesogen” hypothesis. The obesity epidemic is recent in origin and is related to increasing exposure to “man-made” chemicals in occupational and environmental settings (Baillie-Hamilton, 2002). Although such data are only correlational, this hypothesis is supported by experimental evidence showing a role for increased exposures to environmental chemicals in the etiology of obesity.

Many substances, including anabolic steroids and the estrogenic drug diethylstilbestrol (DES), have been used for decades to promote fattening and growth of farm animals; further, other chemicals, including organophosphate pesticides, carbamates, and...
antithyroid drugs, cause obesity in animals (Baille-Hamilton, 2002). There is also increasing evidence in animal models that in utero exposure to environmental chemicals at environmentally relevant concentrations alters developmental programming of adipose tissue and the gastrointestinal–hypothalamic food-intake regulatory system. The subsequent obesity observed in these models has been linked to irreversible alterations in tissue-specific function as a result of altered gene expression (Godfrey et al., 2007).

4.1. Nicotine

Smoking during pregnancy is an environmental factor that provides “proof-of-principle” for the role of developmental exposure to environmental insults in the etiology of obesity later in life. Maternal smoking during pregnancy is associated not only with low birth weight and intrauterine fetal growth retardation, but also causes complications in postnatal growth and development including a propensity to weight gain later in life (Toschke et al., 2002; Wideroe et al., 2003). Chronic administration to rats during gestation of low doses of nicotine (at doses that are relevant to human exposures due to smoking) or during gestation and neonatally, resulted in normal weight at birth but a significant increase in weight gain after birth (Holloway et al., 2005; Levin, 2005), as well as a significant increase in body fat (Williams and Kanagasabai, 1984); there is also altered glucose metabolism and metabolic changes associated with type 2 diabetes, characterized by beta cell apoptosis and loss of beta cell mass. Since hypothalamic control of appetite is likely influenced during the fetal and neonatal period, exposure to environmental agents like nicotine that affect hypothalamic development may alter appetite set-points and contribute to programming of adult obesity. Approximately 20% of pregnant women smoke, so this remains a major public health problem, and one that is modifiable to reduce the risk of developing obesity.

4.2. Estrogenic chemicals

Our focus has been primarily on the enigmatic role of environmental estrogens as obesogens, since in adulthood, exposure to endogenous estrogen or manmade estrogens such as BPA is associated with reduced body weight (Cooke and Naaz, 2004; Nunez et al., 2001), while after menopause and the marked decrease in ovarian estrogen, body weight typically increases. In contrast to its effects in adulthood prior to old age, exposure to estrogenic chemicals, such as BPA and the estrogenic drug DES, during fetal/neonatal life in mice (equivalent to fetal life in humans) results in a subsequent increase in body weight (Howdeshell et al., 1999; Newbold et al., 2007). It should be noted that in epidemiological studies, levels of BPA are positively related to body weight in people, although this may reflect the increased depot of BPA, which is a lipophilic compound, in fat in obese people (Takeuchi et al., 2004; Lang et al., 2008; Stahlhut et al., 2009).

Mouse preadipocytes are located in blood vessels (Tang et al., 2008), and both human and mouse preadipocytes and adipocytes express nuclear estrogen receptors (ERα and ERβ). During development, estrogen is implicated in an increase in adipocyte number as well as subsequent effects on adipocyte function (Cooke and Naaz, 2004). In addition to endogenous estrogen, exposure (at human exposure levels) of rats and mice to estrogenic chemicals used in household products during fetal/neonatal organogenesis can alter differentiation of adipocytes and create functional changes in body weight homeostasis that only become apparent after birth. For example, exposure during fetal or neonatal development to low doses of BPA, which is used to make polycarbonate plastic and the lining of cans as well as in many other products, increases the rate of postnatal growth and obesity in mice and rats (Akingbemi et al., 2004; Howdeshell et al., 1999; Markey et al., 2003, 2001; Miyawaki et al., 2007; Nikaido et al., 2004; Rubin et al., 2001; Takai et al., 2000), Furthermore, BPA has been shown in vitro to increase glucose transport in preadipocytes (Sakurai et al., 2004), and in combination with insulin, to increase conversion of mouse 3T3-L1 fibroblasts into adipocytes while also increasing lipoprotein lipase activity and triacylglycerol accumulation (Masuno et al., 2002), although these in vitro effects in a mouse fibroblast cell line required concentrations higher than those found in human serum, possibly due to the relatively low sensitivity of this cell line to any estrogen.

Exposure to BPA during fetal/neonatal life thus has a similar effect on adult body weight as does exposure during development to low doses of DES. Low doses of DES (1 μg/(kg·day)), either prenatal or neonatal, caused an increase in body weight of CD-1 mice that was not evident at birth but reached significance by 6 weeks of age. At 16 weeks of age, DES exposed animals had 27.6% body fat compared to controls with 20.9% body fat (Newbold et al., 2005). The DES-treated mice thus had excessive abdominal fat, which is associated with cardiovascular disease and diabetes in humans (Newbold et al., 2007). These mice also had elevated levels of leptin, adiponectin, IL-6 and triglycerides that actually developed before the obesity was apparent. Increased leptin levels may be due to altered leptin programming due to chemical exposure.

Other chemicals that mimic estrogens in that they bind to and activate nuclear estrogen receptors and also result in obesity when exposure occurs during development, include the heavy metal cadmium, used as a stabilizer in PVC plastic (Batzer, 1983). Cadmium exposure is associated with both obesity and type 2 diabetes (Haswell-Ekins et al., 2008). It has been surprising to learn that cadmium mimics the action of estradiol via binding to estrogen receptors, and the effects can be inhibited by co-administration of the estrogen-receptor blocker ICI-182,780 (Johnson et al., 2003). Neonatal exposure to other estrogens, such as 2OH-estradiol, 4OH-estradiol, and the naturally occurring phytoestrogen genistein (an estrogenic component of soy that acts primarily via ERβ in adipocytes) also caused a significantly increased body weight at 4 months of age in mice (Newbold et al., 2007).

The effects of soy phytoestrogens such as genistein are complex and depend on the dose and timing of the exposure. For example, the complete absence of phytoestrogens from the diet of rats and mice results in adult obesity and other aspects of metabolic syndrome (Atanassova et al., 2000; Cederroth et al., 2007; Ruhlen et al., 2008), indicating an important role for phytoestrogens in preventing obesity, at least in some rodent models. Since the amount of phytoestrogens in soy-based feed can vary dramatically while the amount of protein is held constant, controlling the amount of phytoestrogens in soy-based feed is required for consistency of results in rodent studies, while completely eliminating phytoestrogens from the feed, which might seem to be a reasonable solution, actually dramatically interferes with the ability to study the factors involved in obesity in rodents (Heindel and vom Saal, 2008).

An interesting recent finding is that BPA and genistein have opposite effects on gene methylation during fetal life in mice. Specifically, BPA resulted in hypomethylation at a specific locus in the viable yellow agouti mouse, while concurrent treatment with genistein negated this effect. Furthermore, mice prenatally exposed to BPA became obese while genistein exposure countered development of an obese phenotype (Dolino et al., 2007). Similar to the findings with genistein and BPA, genistein blocked the effects of cadmium in some tissues (Paik et al., 2003). While the significance of these findings for the aetiology of human obesity is not clear, what is important is that these agents that can cause obesity can also alter epigenetic marks at specific loci. While there are few data at this time, our hypothesis concerning the etiology of obesity proposes that an important mechanism by which environmental chemicals impact obesity is via alterations in gene
expression resulting from epigenetic programming of gene activity during development.

4.3. Other obesogens

Developmental exposures to other environmental chemicals have also been linked with obesity. Lead, in addition to causing brain damage as a result of exposure during development, also results in late-onset obesity in male mice (Leasure et al., 2008).

Organotins are persistent and ubiquitous chemicals found as contaminants in fish and shellfish, food crops, and wood (due to antifungal treatment). Organotin compounds are also stabilizers of polyolefin plastics. All of these uses can lead to significant human exposures. Organotins are a potentially new class of EDCs that impact adipogenesis via targeting key transcription factors in the adipogenic pathway. Specifically, in utero exposure to tributyltin leads to strikingly elevated lipid accumulation in adipose tissue, liver and testes of neonate mice, and results in increased gonadal (abdominal) adipose mass in adults (Grun et al., 2006). Organotins also stimulate an increase in the differentiation of adipocytes in vitro. The mechanism by which organotins impact adipocytes is by acting as a potent dual affinity ligand for the retinoid (RXR) receptor and peroxisome proliferation activated receptor gamma (PPARγ), which play important roles in adipocyte differentiation and energy balance. Subsequent to adipocyte differentiation, these transcription factors increase the expression of genes that promote fatty acid storage and decrease expression of genes that induce lipolysis; as a result, they promote insulin sensitivity and increase fat cell mass via increased triglyceride storage. The effects of tributyltin on adipogenesis are observed in mice at dose levels within the range of human exposures (Grun et al., 2006).

In summary, there are a growing number of environmental chemicals that when administered during development have been shown in animal models to result in obesity later in life. It is therefore likely that obesity can occur due to altered nutrition as well as exposure to environmental chemicals during development via programming of the activity of specific genes. If further research shows this to be true, then the focus on obesity should be changed to prevention by reducing environmental stressors (chemical exposures and nutrition) during development, rather than intervention only after obesity has occurred.

Since we know that there are several environmental chemicals that can cause obesity in offspring when exposure occurs during gestation, and that all of these chemicals are found in humans from biomonitoring studies, it seems logical that a prudent approach to understanding the role of environmental chemicals in obesity would be to study the effects of the mixtures of naturally occurring and manmade chemicals that are found in the majority of people, rather than taking the traditional toxicological/regulatory approach of examining the effects of each chemical one at a time. Studies of effects of mixtures have the potential to yield unexpected outcomes (Kortenkamp, 2008).

Also, the components of the diets used in laboratory animal research (and the type of nutrients human infants and children are fed) are clearly also a major factor that many researchers have not taken into account in terms of the interaction of components of food with environmental chemicals. Furthermore, it is not only the chemicals directly added to food but chemicals that are "indirect food additives", which get into food by leaching out of products that food and beverages are stored in, that are a concern. A prime example is BPA, which is used in polycarbonate reusable food and beverage storage containers and the resin lining of cans, which can lead to substantial levels of human exposure (Vandenbergh et al., 2007; vom Saal and Hughes, 2005). Finally, we consider it likely that as more chemicals are examined for effects of exposure during development on subsequent obesity, the list of “obesogens” will continue to grow (Fig. 2).

Fig. 2. The “tip of the iceberg” indicates that while there is evidence that exposure during development to a few endocrine disrupting chemicals results in obesity in laboratory animals study, only a few chemicals have been studied. It is thus possible that many more chemicals will be found to impact obesity.

5. Conclusions

The issues facing biomedical researchers investigating the causes of obesity are obviously multi-faceted and complex. However, new findings are beginning to shift the focus from the simplistic notion that adult obesity can be understood and controlled by focusing only on energy intake and expenditure. There is now compelling evidence that factors that impact fetal growth are related to postnatal growth rate and adult body weight in humans (Barker, 2004) and laboratory animals (Coe et al., 2008). While the realization that obesity is related to factors in early development is a step in the right direction, the biomedical community has yet to embrace the hypothesis that in addition to nutritional impacts on fetal growth, environmental endocrine disrupting chemicals can act as “obesogens” that can permanently derange developing regulatory systems required for body weight homeostasis.

If this hypothesis concerning the developmental origins and the role of environmental chemicals in the aetiology of obesity is supported by additional research, as we expect it will be, then there would be significant public health implications. This hypothesis changes the focus from treatment of children and adults to prevention during early development. It also changes the focus from classical genetics to epigenetics and to nutrition and environmental chemical exposures during development; most importantly, it changes the focus from intervention to prevention. Our prediction is that the focus should be on pregnancy and infancy, and possibly also early childhood through puberty, as sensitive periods for the development of obesity. Thus, the focus should be on improving nutrition and prevention of exposure to environmental chemicals during vulnerable windows in development.

The optimistic view is that if the chemicals that are related to the obesity epidemic are able to be removed from products that are the primary contributors to human exposures, there would be reason to hope that the current trend of increasing obesity can be reversed.

Acknowledgements

Support during the preparation of this manuscript was provided by NIEHS grant ES11283 to FvS. The views expressed in this article are those of the authors and do not necessarily represent the views or policies of the National Institute of Environmental Health Sciences, NIH/DHHS.

