Page tree
Skip to end of metadata
Go to start of metadata

5E40.24/4F30.15 Fuel Cell


Electricity & Magnetism Demonstrations

Demonstration Manager: Gerald Zani


Thousands of volts discharge between conducting spheres

Producing Static Charge



To demonstrate electric charge .

5A10.10


To produce small amounts of negative or positive static electric charge.

5A10.21

To show that the total amount of charge is conserved when charges are separated by friction.

5A10.35

Coulomb's Law

 

 

To demonstrate the separation of electric charge.

5A20.10

To show electric charge.

5A20.20


To show coulomb repulsion.

5A20.30

Electrostatic Meters

 

 

To measure electric charge.

5A22.10

To show electric charge.

5A22.30

To measure the small voltages or small currents due to electric charges.

5A22.71

To show electric charge.

5A22.72

To show electric charge.

5A22.80

Conductors and Insulators



To show that a neutral, uncharged conductor is attracted by both positive and negative charge.

5A30.16

To show that glass is an insulator when cold, but when heated the resistance changes and it becomes a conductor.

5A30.20

Induced Charge

 

 

To illustrate charging by induction.

5A40.10

To show induced polarization of charge

5A40.22

To show induced dipole attraction and repulsion.

5A40.24

To demonstrate polarization of water molecules.

5A40.30

Name is Different on Page

Electrostatic Machines

 

 

To generate high electrostatic potentials.

5A50.10

To demonstrate operation of Van de Graaf and illustrate electrostatic concepts.

5A50.30

Electric Field

 

 

To show electric charge repulsion.

5B10.10

To model some properties of the force and the potential on a charge placed in an electric field.

5B10.25

A conductive pith ball bounces back and forth in the electric field between two charged plates.

5B10.30


Show electric field lines for five different charge distributions.

5B10.40

A large model for the torque induced on an electric dipole in a uniform electric field.

5B10.50

Gauss's Law

 

 

To show that the charge deposited inside a conductor resides on the outside surface, and the charge inside is zero.

5B20.15

To show the shielding effect of a Faraday Cage.

5B20.35

Electrostatic Potential

 

 

To show the different surface charge densities of the pointed end versus the blunt end of a charged, conducting zeppelin.5B30.20

To demonstrate that for conductors at the same electric potential the rate of discharge of the electric field is HIGHER for a conductor with a SMALLER radius. 

5B30.35

Capacitors

 

 

To compare a variety of capacitor flavors and colors.

5C10.10

To show that if the amount of charge is constant, then changing the distance between the plates of a capacitor will also change the capacitance and the voltage, Q=CV. 

5C10.20

To demonstrate that an isolated plate of a capacitor becomes saturated easily with charge and can build up a potential but when a second grounded plate is brought nearby, the potential for that charge is reduced and now you can add a lot more charge to the same plate. 

5C10.22

Dielectrics

 

 

Demonstrate the force on a dielectric in an electric field.

5C20.20

To model the torque caused by the force of an external electric field acting on an electric dipole moment. 

5C20.33


Displacement Current

The magnetic field generated by a displacement current is measured in between two plates of a capacitor.

5C20.60

Photo

Energy Stored in a Capacitor

 

 

To show the quick release of  the energy stored in a large capacitor. 

5C30.20

Mechanical Equivalent Energy in a Capacitor

To show the mechanical equivalent of the electric energy stored in a capacitor, and to show that this amount of energy is proportional to the square of the voltage. 

5C30.30

Photo

Resistivity and Temperature

 

 

To show zero resistance. 

5D20.55

To show that the resistance of glass is lower at higher temperature.

5D20.60

Duplicate Name

To show that the resistance changes with the temperature.

5E20.10

Cells and Batteries

 

 

This is a demo of fuel cell technology. 

5E40.24

Creation of a primitive battery using pieces of zinc and copper embedded in a citrus fruit.5E40.25

Peltier and Seebeck effect demonstrated through a single bismuth-telluride thermoelectric couple. 

5E50.60

Ohm's Law

 

 

To show the resistance of a wire is proportional to length, and to show how the power to a lamp is decreased when the resistance of the wire is increased. 

5F10.20

Circuit Analysis

 

 

To illustrate the motion of electrons in a circuit.

5F20.15

To demonstrate Kirkoff's laws with a series and a parallel connection of two identical light bulbs.

5F20.49

A simple circuits to encourage thought about the relationships between resistance, current, voltage and power.

5F20.50

RC Circuits

 

 

To show the voltage curve when a capacitor is charged. 

5F30.20

To show the difference between the potential across the resistor over time and the potential across the capacitor over time.5F30.23

To show the RC time constant.

5F30.60

Magnets

 

 

To demonstrate the magnetism of a natural lodestone.

5G10.10

To introduce the idea that the magnetic force can penetrate your hand (a non-ferrous material) without apparent obstruction. 

5G10.11

Magnet Domains

 

 

To show the polarization of ferromagnetic domains in a material. 

5G20.20

Paramagnetism and Diamagnetism

 

 

To show paramagnetic materials are attracted to magnetic fields.

5G30.20

To show diamagnetic levitation5G30.45

Temperature and Magnetism

 

 

To the curie point of Nickel. 

5G50.10

To show the Meissner effect. 

5G50.50

Fields and Currents

 

 

To visualize the magnetic field of a bar magnet. 

5H10.30

Magnetic Shielding

To demonstrate magnetic shielding. 

5H10.61

Photo

To show that a  magnetic field is created by a current wire.

5H15.10

To show the magnetic field of a solenoid.

5H15.40

To show the field inside, outside, and at the ends of a long solenoid.

5H15.47

To show the field of a toroid. 

5H15.50

When current runs through a solenoid, a uniform magnetic field is induced inside the solenoid5H15.70

Forces on Magnets

 

 

To show the forces of magnets. 

5H20.10

A spinning magnet levitates over a toroidal magnet.

5H20.22

Magnet and Electromagnet

 

 

To show that the an electromagnet has a field that is similar to a bar magnet. 

5H25.10

To show that the an electromagnet is similar to a bar magnet. 

5H25.11

Force on a Moving Charge

 

 

Force of a Magnetic Field on a Moving Charge
5H30.10

To demonstrate the force on an electron beam by a magnet field.

5H30.15

Force on a Current

 

 

To show that the current in a wire will create a magnetic field. 

5H40.10

To demonstrate the force on a current-carrying wire in a magnetic field. 

5H40.30

To demonstrate how an electric potential difference and a current can be generated when a conductor moves through a magnetic field.

5H40.60

Torque on a Current Loop

 

 

To show that the forces on a current loop inserted in a magnetic field are determined by the direction of the current and the direction of the B field. 

5H50.30

Self Inductance

 

 

To demonstrate the back EMF caused by interrupting the current of  a coil. 

5J10.23

LR Circuits

 

 

To show the rise time of the current through the resistor in an RL circuit.5J20.10

To show self inductance and back EMF. 

5J20.20

To show the difference between voltage across the inductor over time and the voltage across the resistor over time. 5J20.30

RLC Circuits (DC)

 

 

To show the ringing from an RLC circuit. 

5J30.10

Induced Currents

 

 

To show that a current is induced in a coil by a changing magnet field. 

5K10.20

To demonstrate generation of DC voltage with the rotational motion of a magnet and a conductor using a method which may involve an explanation other than electromagnetic induction.  This demonstration is also known as the "Motional EMF Demonstration", the "Homopolar Generator" and the "Unipolar Motor". 

5K10.80

To crush an aluminum can with a strong field strength, specifically an electromagnetic field.

5K10.90

Eddy Currents

 

 

To show the braking effects of induced eddy currents. 

5K20.10

To show Lenz's Law in a dramatic way. 

5K20.25

To show some concepts about magnetic induction.

5K20.30

To show that a magnet on a pivot held above a spinning disk will rotate. 

5K20.42

Transformers

 

 

To show a step up transformer.

5K30.50

An isolation transformer has a winding ratio of 1:1.  One light bulb is in series with the primary, and a second light bulb is in series with the secondary.  

5K30.51

Motors and Generators

 

 

To show how a DC motor works. 

5K40.10

To demonstrate a how a person can pedal a simple DC generator and transform mechanical energy into electrical energy capable of delivering up to a kilowatt of power directly to a resistive load.

5K40.83

Impedance

 

 

To show the L/R time constant of an inductive circuit and that the voltage leads the current by 90 degrees. 

5L10.20

RLC Circuits (AC)

 

 

To demonstrate resonance in an RLC circuit.

5L20.10

Semiconductors

 

 

Hall Probe

To show the hall effect.

5M10.10

Photo

To show a PN photocell.

5M10.60

To show a silicon semiconductor.

5M10.63

Tubes

 

 

To show a vacuum tube. 

5M20.33

Transmission Lines and Antennas

 

 

To show a large coaxial cable transmission line.

5N10.10

To show the polarization of microwaves.5N10.16

To demonstrate microwave standing waves. 

5N10.55

Light Bulb in a Microwave

To demonstrate the electromagnetic fields are waves with a speed and wavelength that carry energy.5N10.58

To demonstrate that energy is transmitted through space in the form of electromagnetic waves, and also to show the waves are polarized. 

5N10.60

Tesla Coil

 

 

To demonstrate a Tesla coil and show how magnetic induction and resonance is used in the production of high-voltage and the wireless transmission of electricity.

5N20.40

Electromagnetic Spectrum

 

 

To show the ROYGBIV spectrum of light.

5N30.10



  • No labels